

UPPSALA UNIVERSITET

PHYSICAL TRAINING AND EXERCISE AS TREATMENT FOR MG?

Anna Rostedt Punga, MD; PhD Professor and consultant physician of clinical neurophysiology Clinical Neurophysiology Uppsala University & Uppsala University Hospital Sweden

Overall health benefits

- Physical exercise reduces the risk of premature mortality and chronic disease with at least 20-30% (Warburton, Curr Opin Cardiol, 2017)
- Physical inactivity related to higher mortality (WHO 2009)
- Beneficial effects in several autoimmune diseases and part of the treatment regimen, for example in rheumatoid arthritis

(Perandini 2012, Spruit 2013, Giesser 2015; Stavropoulos-Kalinoglou 2013, Hochberg 2012, Alexanderson 2012, Zainuldin 2011, Kennedy 2013, Nielsen 2006, Mancia 2013 Chetlin 2004; Voet N 2014)

How about Myasthenia Gravis?

Potential benefits of physical activity in MG?

- ➢Physical exercise influences the **immune response**, with a rise in T regulatory cells, decreased immunoglobulin secretion and decreased Th1 cell production
- ➢Release of the myokine IL-6, which induces an anti-inflammatory response through IL10 secretion and IL-1b inhibition
- Exercise enhances aerobic capacity, improves muscle function, and reduces disability in other neuromuscular disorders, also in MG?

Challenges of measuring fatigue in MG: relevant for physical activity intervention studies

> Fatigue is both *performance fatigability* and *fatigue perception*

> Fatigue may be best assessed using multiple measures

Clinical MG scores: quantitative MG score (QMG) and MG composite scale (MGC)

>Neurophysiological examination: repetitive nerve stimulation (RNS)

> Fatigue severity scale (FSS); developed primarily for multiple sclerosis

Functional evaluations: 6 min or 2 min walk tests

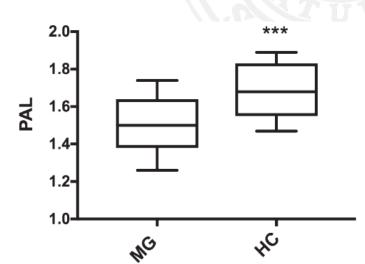
Subjective evaluation forms

Reviewed in: O'Connor, Front Neurol, 2020

Pattern of habitual exercise in MG patients?

➤27 MG patients had an accelerometer for 7 days

> Physical activity level (PAL) was lower in MG patients


(1.5±0.14) than in healthy controls(1.7±0.15) (p<0.00001)

➤MG patients had a sedentary behavior during 78 % of the day; with only 22% (all women) achieving the recommended level of 10 000 steps/day.

➢Interestingly: no correlation between MG severity and PAL (R=0.33; p=0.26)

O'Connor et al, J Neuromusc Dis 2019

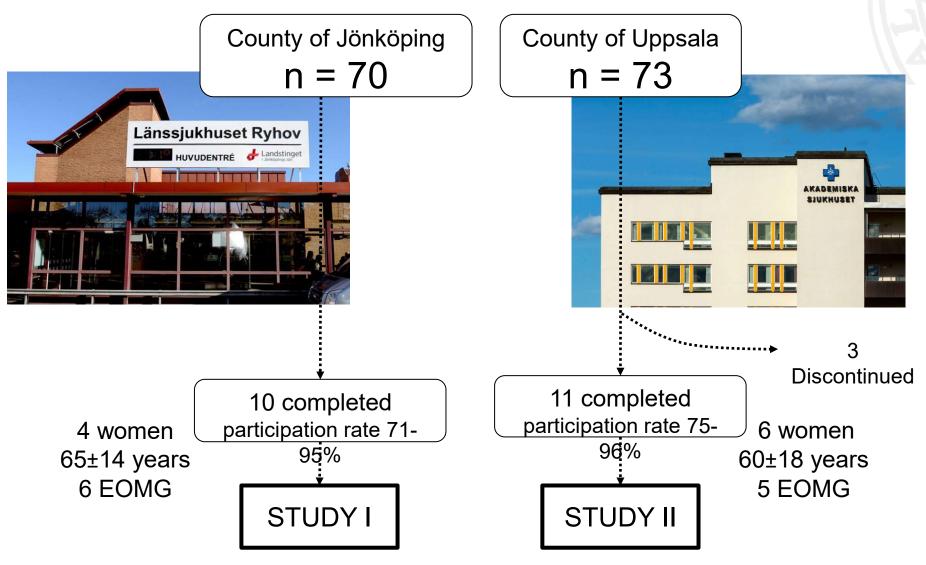
Study	Design	Aim to define:	Participants	Training protocol
Rahbek et al, 2017	2 arms randomized and stratified, supervised; 8 weeks	-Feasibility of AT and RT - Muscle strength, psychological wellbeing	15 MGFA class II+III 3 dropouts (2 unrelated) 6 completed AT 6 completed RT	 AT: mod-high intensity, cycle test RT: progressive increase in resistance exercises
Westerberg et al, 2017	Prospective pilot study, supervised; 12 weeks	 Safety and efficacy of physical exercise training in MG 	10 MGFA class I+II (8 AChR+, 2 AChR-) No dropouts	 AT: bicycle interval training RT: resistance exercises Balance training
Westerberg et al, 2018	Non-blinded observational study, supervised; 12 weeks	- Effects of physical exercise on functional muscle parameters	14 MGFA class I-IV 3 dropouts (all unrelated) 8 AChR+, 2 AChR- /MuSK-; 5 EOMG and 6 EOMG	AT: bicycle interval training RT: resistance exercises
Lohi et al, 1993	Pilot study, 10 weeks	 Evaluate muscle force and fatigue resistance 	11 patients with mild-moderate MG	Unilateral strength training one arm and one leg

EXERCISE IN MYASTHENIA GRAVIS: A FEASIBILITY STUDY OF AEROBIC AND RESISTANCE TRAINING

MARTIN AMADEUS RAHBEK, MSc,¹ ERIK ELGAARD MIKKELSEN, MSc,¹ KRISTIAN OVERGAARD, PhD,¹ LOTTE VINGE, MD, PhD,² HENNING ANDERSEN, MD, PhD,² and ULRIK DALGAS, PhD¹

¹Section for Sport Science, Department of Public Health, Aarhus University, Denmark; Dalgas Avenue 4, 8000 Aarhus C, Denmark ²Department of Neurology, Aarhus University Hospital, Noerrebrogade, 44, 8000 Aarhus C, Denmark

Screening of 150 MG patients; 15 included; 12 patients (11 mild and 1 moderate MG) fulfilled the exercise


➢Both groups reported adverse events, including bulbar symptoms (n=2) and increased fatigue (n=3), QMG score was unchanged

> The RT group showed increases in maximal strength and functional capacity

➢Eight weeks of moderate to high intensity AT and PRT were feasible for most patients with mild MG. Maximal strength and functional capacity increased in the RT group

Westerberg et al x 2: study design

Each patient served as his/her own control (before vs after training)

UPPSALA UNIVERSITET

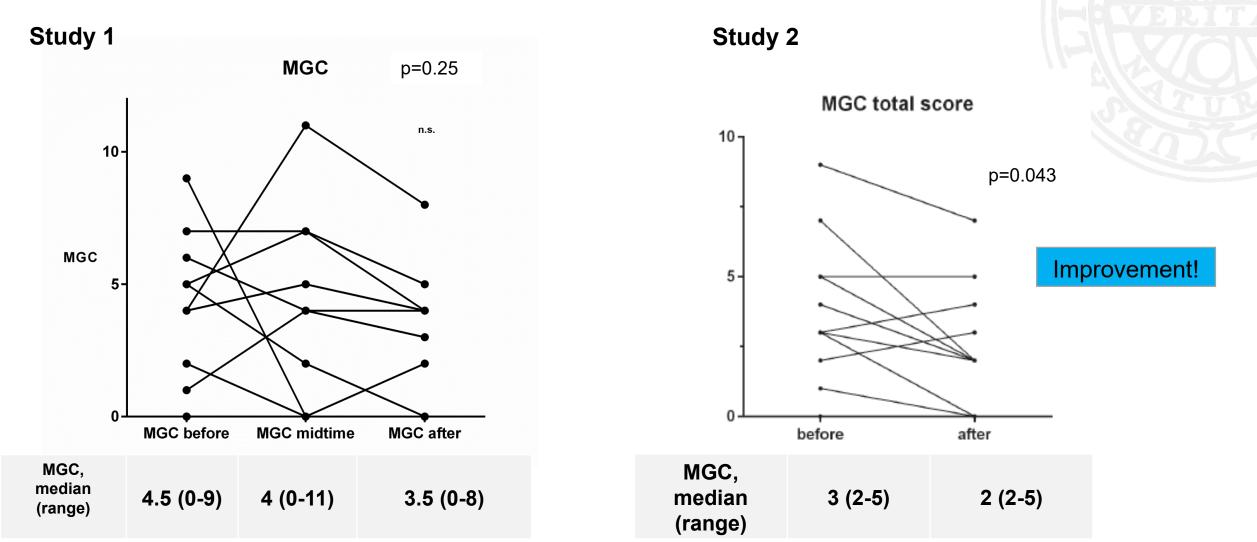
Exercise regimen

Twice a week for 12 weeks, under physioteraphy supervision, 75 min per session:

* 30 min aerobic training on stationary bicycles

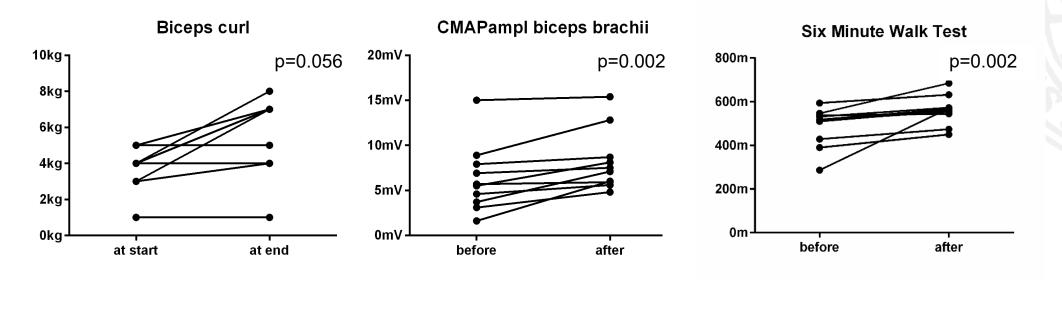
--5 minutes warming up

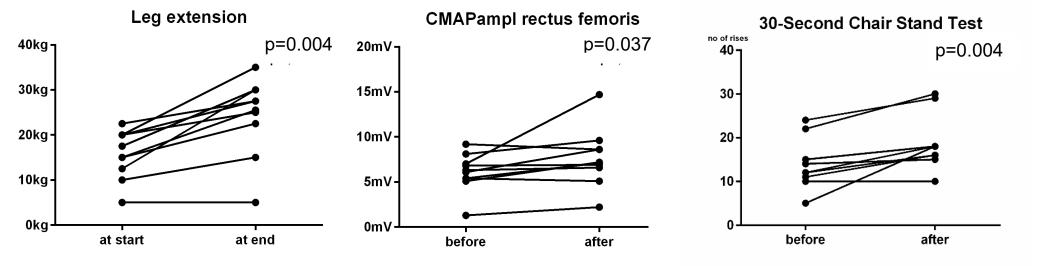
--seven sets of


- 2 minutes "maximum cycling"1 minute "recovery cycling"
- --5 minutes cooling down
- ✤ 8 different muscle resistance exercises, 2 sets 10 repetition maximums
- ✤ Balance

UNIVERSITE

No worsening in clinical status= no MG deterioration


MG Composite Scale


0 = no symptoms 50 = pronounced weakness, ventilator

Westerberg et al, Muscle Nerve, 2017 UNIVERSITET Westerberg et al, Medicine 2018

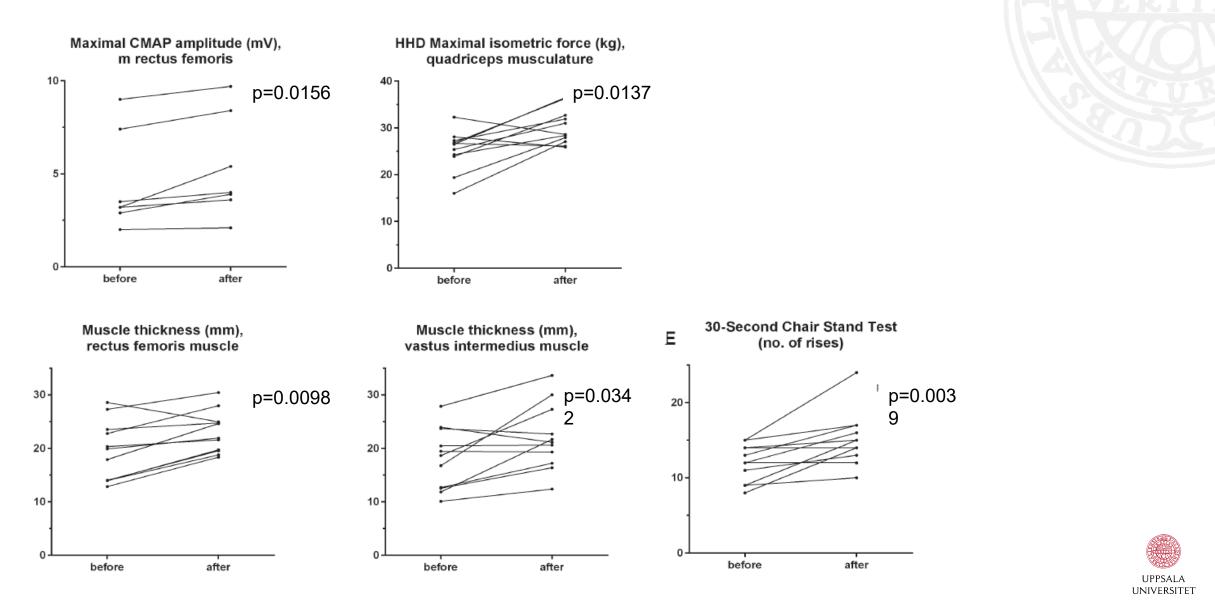
UPPSALA

Improved muscle function

Westerberg et al, Muscle Nerve, 2017

UPPSALA

UNIVERSITET


Improved funtional and general effects

- Improvement in 6 minute walk test (p=0.0039) and 30-Second Chair Stand Test (p=0.0078)
- > Changed body composition: increased muscle mass and reduced fat mass (p=0.019)
- > Improved ability to perform physical exercise (p=0.0078) according to ESES
- > No change in body weight and BMI
- Reduced serum microRNA miR-150-5p and miR-21-5p
- > No abnormal increase of muscle enzymes (CK, myoglobin)

Westerberg et al, Muscle Nerve, 2017

Improved leg muscle function

Westerberg et al, Medicine, 2018

The first randomized controlled trial of exercise in MG

Available online at www.sciencedirect.com

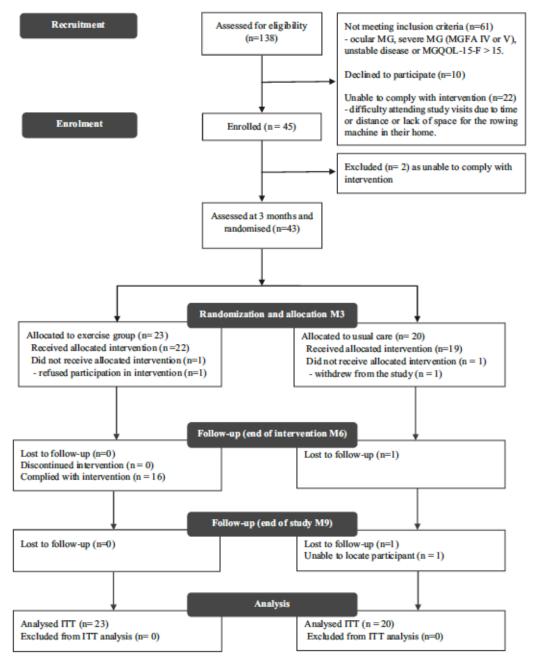
Neuromuscular Disorders 31 (2021) 726-735

www.elsevier.com/locate/nmd

Home-based exercise in autoimmune myasthenia gravis: A randomized controlled trial

S Birnbaum^a, R Porcher^b, P Portero^c, B Clair^d, S Demeret^d, B Eymard^c, M Gargiulo^a, E Louët^a, S Berrih-Aknin^a, R Le Panse^e, P Aegerter^d, JY Hogrel^a, T Sharshar^{f,*}, the MGEX Study Group[#]

^a Institute of Myology, Paris, France ^b Hotel-Dieu Hospital Clinical Epidemiology Centre, Paris, France ^c Université Paris-Est, Creteil, France ^d APHP, Assistance Publique - Hopitaux de Paris, France ^e Paris Descartes University Institute of Psychology, Paris, France ^rGHU-Psychiatrie & Neurosciences site Sainte-Anne 75014 Paris, France Received 16 November 2020; received in revised form 7 May 2021; accepted 11 May 2021



- The aim of this study was to determine whether exercise as an adjunct therapy is well tolerated and can improve health-related quality of life (HRQoL) in stabilized, generalized autoimmune myasthenia gravis (gMG).
- Parallel-group, multi-center prospective RCT using computer-generated block randomization.
- Adults with stabilized, generalized MG, and no contra-indication to exercise, were eligible.

Neuromuscular Disorders 31 (2021) 726-735

S. Birnbaum, R. Porcher, P. Portero et al.

- Participants received usual care alone or usual care and exercise.
- The exercise intervention consisted of 3-weekly 40 min sessions of an unsupervised, moderate-intensity home rowing program over 3 months.

RESULTS

- The primary endpoint was the change in health-related quality of life from randomization to post-intervention.
- Although exercise was well tolerated, the intention-to-treat analysis revealed no evidence of improved health-related quality of life compared to usual care

Pragmatic study of tailored gym training for generalized MG

- > Pilot study 6 months with personal trainer (PT)
- > 8 patients with generalized MG
- > Each patient obtained an individualized physical exercise program designed by PT,

in a public gym

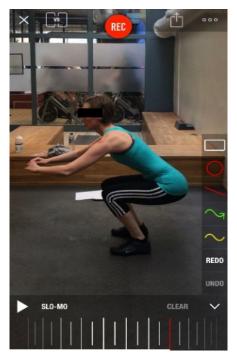
PAT #	SEX/A GE	DUR (Y)	WEIGHT/ BMI	MGFA CLASS	ANTIBODY SUBTYPE	MG MEDICATIONS	CONCOMITANT DISORDERS
1	F/32	4	59/ 19.7	IIB	AChR	Mestinon	None
2	F/71	5	67/ 25.2	IIA	AChR	Mestinon prednisolon 10 mg	Hypertension, astma
3	M/84	22	85/ 26.5	IIA	AChR	Mestinon	Spinal stenosis, cardiovascular disease
4	M/76	34	77/ 24.3	IIA	Seroneg	Prednisolon 10 mg	Osteoporosis
5	F/58	12	87/ 30.8	IIA	MuSK	Rituximab Prednisolon 5 mg	Diabetes type II
6	F/31	15	64/ 21.9	IIB	AChR	Terbutaline Prednisolon 5 mg	None
7	F/34	8	80/ 26.7	IIA	AChR	None	None

UPPSALA UNIVERSITET

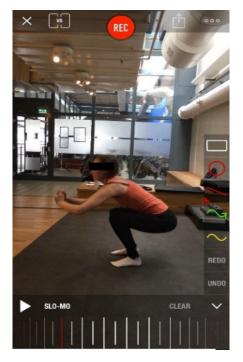
Examples of patients

Patient	Medication	Symptoms at start		Personal goal with pt		Obtained goals	
Woman3 2 y	Mestinon	Poor core strength Restricted thoracic flexibility Weak buttock muscles		Restore balance by improving mot the thoracic spine, reduce exagger lordotic posture by strengthening to core, buttock and thigh muscles.	Fully obtained		
Man 76 y	Prednisolon 10 mgx1	Very weak buttock and thigh muscles, quadriceps and hamstrings. Unable to perform lunges/squats		Rebuild lower limb muscle strength.		Fully obtained	
Patient	Thoughts at	Thoughts at baseline		Thoughts at 3 months		Thoughts at 6 months	
	"Ctiff body	faaling old nain in the					

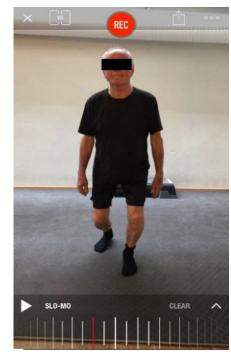
Woman 32 y	"Stiff body, feeling old, pain in the upper and lower back, weak legs, difficulty taking deep breaths"	"The entire back region feels so much better. My neck worsened temporarily but then the issue resolved. Stronger legs and no problem with deep breathing"	"The entire back region still feels better. The neck feels good and strong, legs are stronger, no problem with deep breathing"
Man 76 y	"Leg muscles are very weak. Poor fitness, cannot get my pulse up"	"My leg muscles feels stronger".	"My leg muscles are considerably stronger".


Example of program

Program						
Cycling	Level 7	6-10 min	Level 7	6 min	Level 8	6 min
Rowing machine			level 4	5 min	Level 5	5 min
Crosstrainer			Level 5	6 min		
Kneebend against wall	3	10 sek	3	10sek		
Knee bend	2x6	TRX	2x5	5kg	3x6	6kg
Reverse plank						
Small lunge	2x6		2x3/leg	4kg		
Sit-up						
Push-up			2x4-10			
Excentric push-up			5			
Sitting row	2x6	23kg	3x8	43kg	4x8	43 kg
Lats pull						
Chest press, straight	2x6	18kg	3x8	36kg	4x10	36 kg
Chest press, upwards					2x8	23 kg
Pectoral fly maskin					4x10	16 kg
Reverse Pec-dec					3x10	23 kg
Bicepscurl			3x10	23kg	3x10	23 kg
Triceps press			3x10	23kg	3x10	23 kg
Standing rotation cable					4x10	23 kg
Leg kick			3x10	23kg	4x10	23 kg
Quadriceps curl			3x10	23kg	4x10	23-25 kg
Crunches			4x8	46kg	3x10	50 kg
Sitting leg press					3x10	82 kg



UPPSALA UNIVERSITET


BEFORE

BEFORE

AFTER

TAKE HOME MESSAGE

- Patients with well-controlled MG can adhere safely to general exercise recommendations, including resistance training and aerobic training, without deterioration
- MG patients can indeed improve their functional muscle status as a result of aerobic and high-resistance strength training that can be individually tailored also in a gym setting
- This knowledge is important in order to establish collective as well as personalized guidelines on physical exercise for MG patients
- Simply being more active and reducing overall sedentary time is just as important

Thank you for the attention!!

Vetenskapsrådet

Funding

Acknowledgements: Elisabet Westerberg, MD; PhD Physiotherapists at Uppsala University All MG patients who participated

